Animal (Mar 2024)
Effects of group size on agonistic interactions in dairy cows: a descriptive study
Abstract
Group-housed cattle may engage in agonistic interactions over resources such as feed, which can negatively affect aspects of welfare. Little is known about how contextual factors such as group size influence agonistic behaviour. We explored the frequency of agonistic interactions at the feeder when cattle were housed in different-sized groups. We also explored the consistency of the directionality of agonistic interactions in dyads and of the number of agonistic interactions initiated by individuals across the group sizes. Four replicates of 50 cows each were assessed in two group-size phases. In Phase 1, cows were kept in one group of 50. In Phase 2, these same cows were divided into five groups of 10, maintaining stocking density (i.e., ratio of animals to lying stalls and feed bunk spaces). We measured agonistic replacements (i.e., interactions that result in one cow leaving the feed bin and another taking her place) at an electronic feeder using a validated algorithm. We used these data from Phase 1 to calculate individual Elo-ratings (a type of dominance score). Cows were then categorised into five dominance categories based upon these ratings. To ensure a consistent Elo-rating distribution between phases, two cows from each dominance category were randomly assigned to each small group of 10 cows. The mean ± SE number of replacements per cow was similar regardless of whether the cows were housed in groups of 50 (34.1 ± 2.4) or 10 (31.1 ± 4.5), although the groups of 10 were more variable. Further, 81.6 ± 7.7% (mean ± SD) of dyads had the same directionality across group sizes (i.e., the same individual won the majority of interactions in the dyad) and individuals were moderately consistent in the number of replacements they initiated (intraclass correlation coefficient = 0.62 ± 0.11; mean ± SD). These results indicate that the relationship between group size and agonistic behaviour is complex; we discuss these challenges and suggest new avenues for further research.