Kinetic Study and Reaction Mechanism of the Gas-Phase Thermolysis Reaction of Methyl Derivatives of 1,2,4,5-Tetroxane
Alexander G. Bordón,
Mariela I. Profeta,
Jorge M. Romero,
María J. Jorge,
Lilian C. Jorge,
Nelly L. Jorge,
C. Ignacio Sainz-Díaz,
Juliana Cuéllar-Zuquin,
Daniel Roca-Sanjuán,
César Viseras Iborra,
André Grand,
Alfonso Hernández-Laguna
Affiliations
Alexander G. Bordón
Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
Mariela I. Profeta
Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
Jorge M. Romero
Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
María J. Jorge
Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
Lilian C. Jorge
Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
Nelly L. Jorge
Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
C. Ignacio Sainz-Díaz
Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas (CSIC), Av. Las Palmeras 4, 18100 Armilla, Granada, Spain
Juliana Cuéllar-Zuquin
Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, 46071 Valencia, Spain
Daniel Roca-Sanjuán
Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, 46071 Valencia, Spain
César Viseras Iborra
Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas (CSIC), Av. Las Palmeras 4, 18100 Armilla, Granada, Spain
André Grand
Unité de Formation et de Recherche, Université Grenoble Alpes, Commissariat á l’Énergy Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Nanoscience and Cryogenics-Systèmes Moléculaires et Nanomatériaux por l’Énergieset la Santé (INAC-SyMMES), 38000 Grenoble, France
Alfonso Hernández-Laguna
Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas (CSIC), Av. Las Palmeras 4, 18100 Armilla, Granada, Spain
Tetroxane derivatives are interesting drugs for antileishmaniasis and antimalaric treatments. The gas-phase thermal decomposition of 3,6,-dimethyl-1,2,4,5-tetroxane (DMT) and 3,3,6,6,-tetramethyl-1,2,4,5-tetroxane (acetone diperoxide (ACDP)) was studied at 493–543 K by direct gas chromatography by means of a flow reactor. The reaction is produced in the injector chamber at different temperatures. The resulting kinetics Arrhenius equations were calculated for both tetroxanes. Including the parent compound of the series 1,2,4,5-tetroxane (formaldehyde diperoxide (FDP)), the activation energy and frequency factors decrease linearly with the number of methyl groups. The reaction mechanisms of ACDP and 3,6,6-trimethyl-1,2,4,5-tetroxane (TMT) decomposition have been studied by means of the DFT method with the BHANDHLYP functional. Our calculations confirm that the concerted mechanism should be discarded and that only the stepwise mechanism occurs. The critical points of the singlet and triplet state potential energy surfaces (S- and T-PES) of the thermolysis reaction of both compounds have been determined. The calculated activation energies of the different steps vary linearly with the number of methyl groups of the methyl-tetroxanes series. The mechanism for the S-PES leads to a diradical O···O open structure, which leads to a C···O dissociation in the second step and the production of the first acetaldehyde/acetone molecule. This last one yields a second C···O dissociation, producing O2 and another acetone/acetaldehyde molecule. The O2 molecule is in the singlet state. A quasi-parallel mechanism for the T-PES from the open diradical to products is also found. Most of the critical points of both PES are linear with the number of methyl groups. Reaction in the triplet state is much more exothermic than the singlet state mechanism. Transitions from the singlet ground state, S0 and low-lying singlet states S1–3, to the low-lying triplet excited states, T1–4, (chemical excitation) in the family of methyl tetroxanes are also studied at the CASSCF/CASPT2 level. Two possible mechanisms are possible here: (i) from S0 to T3 by strong spin orbit coupling (SOC) and subsequent fast internal conversion to the excited T1 state and (ii) from S0 to S2 from internal conversion and subsequent S2 to T1 by SOC. From these experimental and theoretical results, the additivity effect of the methyl groups in the thermolysis reaction of the methyl tetroxane derivatives is clearly highlighted. This information will have a great impact for controlling these processes in the laboratory and chemical industries.