Civil Engineering Journal (Oct 2016)

OPTIMIZATION OF THE TEMPERATURE CONTROL SCHEME FOR ROLLER COMPACTED CONCRETE DAMS BASED ON FINITE ELEMENT AND SENSITIVITY ANALYSIS METHODS

  • Huawei Zhou ,
  • Yihong Zhou,
  • Chunju Zhao,
  • Zhipeng Liang

DOI
https://doi.org/10.14311/CEJ.2016.03.0014
Journal volume & issue
Vol. 2016, no. 3

Abstract

Read online

Achieving an effective combination of various temperature control measures is critical for temperature control and crack prevention of concrete dams. This paper presents a procedure for optimizing the temperature control scheme of roller compacted concrete (RCC) dams that couples the finite element method (FEM) with a sensitivity analysis method. In this study, seven temperature control schemes are defined according to variations in three temperature control measures: concrete placement temperature, water-pipe cooling time, and thermal insulation layer thickness. FEM is employed to simulate the equivalent temperature field and temperature stress field obtained under each of the seven designed temperature control schemes for a typical overflow dam monolith based on the actual characteristics of a RCC dam located in southwestern China. A sensitivity analysis is subsequently conducted to investigate the degree of influence each of the three temperature control measures has on the temperature field and temperature tensile stress field of the dam. Results show that the placement temperature has a substantial influence on the maximum temperature and tensile stress of the dam, and that the placement temperature cannot exceed 15 °C. The water-pipe cooling time and thermal insulation layer thickness have little influence on the maximum temperature, but both demonstrate a substantial influence on the maximum tensile stress of the dam. The thermal insulation thickness is significant for reducing the probability of cracking as a result of high thermal stress, and the maximum tensile stress can be controlled under the specification limit with a thermal insulation layer thickness of 10 cm. Finally, an optimized temperature control scheme for crack prevention is obtained based on the analysis results.

Keywords