Pathogens (Apr 2025)
Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study
Abstract
Molds are frequent indoor contaminants, where they can colonize many materials. The subsequent aerosolization of fungal spores from moldy surfaces can strongly impact indoor air quality and the health of occupants. The investigation of fungal contamination of habitations is a key point in evaluating sanitary risks and understanding the relationship that may exist between the fungal presence on surfaces and air contamination. However, to date there is no “gold standard” of sampling indoor air for such investigations. Among various air sampling methods, impingement can be used for capturing fungal spores, as it enables real-time sampling and preserves analytical follow-up. Its efficiency varies depending on several factors, such as spore hydrophobicity, sampling conditions, etc. Sampling devices may also impact the results, with recovery rates sometimes lower than filtration-based methods. The Coriolis µ air sampler, an impingement-based device, utilizes centrifugal force to concentrate airborne particles into a liquid medium, offering flexibility for molecular analysis. Several studies have used this device for air sampling, demonstrating its application in detecting pollen, fungal spores, bacteria, and viruses, but it is most often used in laboratory conditions. The present case study, conducted in a moldy house, aims to investigate the efficiency of this device in sampling fungal spores for DNA analysis in indoor environments. The results obtained suggest that the use of this device requires an optimized methodology to enhance its efficiency and reliability in bioaerosol research.
Keywords