Jornal Brasileiro de Patologia e Medicina Laboratorial (Jul 2021)
Use of different matrices to construct the standard curve for the paracetamol dosage by visible spectrophotometry
Abstract
ABSTRACT Introduction: Acute paracetamol poisoning is confirmed by the determination of its serum level and allows assessing the risk of hepatotoxicity, which can be monitored by the Rumack-Matthew nomogram for the administration of the N-Acetylcysteine antidote, as well as for the prognosis of intoxication. Objective: Because of its analytical importance, we evaluated the influence of different matrices (ultrapure water, serum, and plasma) on the construction of the paracetamol calibration curve, aiming to reduce the analytical cost and facilitate its implementation in clinical and emergency laboratories. Material and methods: A standard stock solution of paracetamol of 1 mg ml-1 was obtained, from which appropriate dilutions originated the following concentrations 20, 50, 100, 150, 200, 250, and 300 mg l-1 in the different matrices, in triplicate, reading at complete after 430 nm in spectrophotometer and reproduced after three months. The results were statistically analyzed (p < 0.05). Results and discussion: Good laboratory practices include remaking the calibration curve when stock reagents are remade aiming to readjust the line equation indicated by a measuring instrument. The biological samples indicated as matrices on a calibration curve are usually serum and plasma. However, these biological products, when commercially purchased, are of high cost. Ultrapure water can replace serum and plasma in the paracetamol calibration curve according to the linearity of the curve, which showed the same trend line for the three matrices. Conclusion: The three matrices can be used in the construction of the paracetamol calibration curve, but the use of ultrapure water reduces the analysis costs.
Keywords