Atmospheric Measurement Techniques (Feb 2022)

Estimating vertical wind power density using tower observation and empirical models over varied desert steppe terrain in northern China

  • S. Zhou,
  • Y. Yang,
  • Z. Gao,
  • Z. Gao,
  • X. Xi,
  • Z. Duan,
  • Y. Li

DOI
https://doi.org/10.5194/amt-15-757-2022
Journal volume & issue
Vol. 15
pp. 757 – 773

Abstract

Read online

A complex and varied terrain has a great impact on the distribution of wind energy resources, resulting in uncertainty in accurately assessing wind energy resources. In this study, three wind speed distributions of kernel, Weibull, and Rayleigh type for estimating average wind power density were first compared by using meteorological tower data from 2018 to 2020 under varied desert steppe terrain contexts in northern China. Then three key parameters of scale factor (c) and shape factor (k) from the Weibull model and surface roughness (z0) were investigated for estimating wind energy resource. The results show that the Weibull distribution is the most suitable wind speed distribution over that terrain. The scale factor (c) in the Weibull distribution model increases with an increase in height, exhibiting an obvious form of power function, while there were two different forms for the relationship between the shape factor (k) and height: i.e., the reciprocal of the quadratic function and the logarithmic function, respectively. The estimated roughness length (z0) varied with the withering period, the growing period, and the lush period, which can be represented by the estimated median value in each period. The maximum and minimum values of surface roughness length over the whole period are 0.15 and 0.12 m, respectively. The power-law model and the logarithmic model are used to estimate the average power density values at six specific heights, which show greater differences in autumn and winter, and smaller differences in spring and summer. The gradient of the increase in average power density values with height is largest in autumn and winter, and smallest in spring and summer. Our findings suggest that dynamic changes in three key parameters (c, k, and z0) should be accurately considered for estimating wind energy resources under varied desert steppe terrain contexts.