Sensors (Feb 2020)
Fully Integrated Photoacoustic NO<sub>2</sub> Sensor for Sub-ppb Level Measurement
Abstract
A fully integrated photoacoustic nitrogen dioxide (NO2) sensor is developed and demonstrated. In this sensor, an embedded photoacoustic cell was manufactured by using an up-to-date 3D printing technique. A blue laser diode was used as a light source for excitation of photoacoustic wave in the photoacoustic cell. The photoacoustic wave is detected by a sensitive microelectromechanical system (MEMS) microphone. Homemade circuits are integrated into the sensor for laser diode driving and signal processing. The sensor was calibrated by using a chemiluminescence NO−NO2−NOX gas analyzer. And the performance of this sensor was evaluated. The linear relationship between photoacoustic signals and NO2 concentrations was verified in a range of below 202 ppb. The limit of detection was determined to 0.86 ppb with an integration time of 1 s. The corresponding normalized noise equivalent absorption was 2.0 × 10−8 cm−1∙W∙Hz−1/2. The stability and the optimal integration time were evaluated with an Allan deviation analysis, from which a detection limit of 0.25 ppb at the optimal integration time of 240 s was obtained. The sensor was used to measure outdoor air and the results agree with that obtained from the NO−NO2−NOX gas analyzer. The low-cost and portable photoacoustic NO2 sensor has a potential application for atmospheric NO2 monitoring.
Keywords