Applied Sciences (Jul 2022)
Path-Following and Obstacle Avoidance Control of Nonholonomic Wheeled Mobile Robot Based on Deep Reinforcement Learning
Abstract
In this paper, a novel path-following and obstacle avoidance control method is given for nonholonomic wheeled mobile robots (NWMRs), based on deep reinforcement learning. The model for path-following is investigated first, and then applied to the proposed reinforcement learning control strategy. The proposed control method can achieve path-following control through interacting with the environment of the set path. The path-following control method is mainly based on the design of the state and reward function in the training of the reinforcement learning. For extra obstacle avoidance problems in following, the state and reward function is redesigned by utilizing both distance and directional perspective aspects, and a minimum representative value is proposed to deal with the occurrence of multiple obstacles in the path-following environment. Through the reinforcement learning algorithm deep deterministic policy gradient (DDPG), the NWMR can gradually achieve the path it is required to follow and avoid the obstacles in simulation experiments, and the effectiveness of the proposed algorithm is verified.
Keywords