Clinical and Experimental Hypertension (May 2017)

Zanthoxylum alkylamides activate phosphorylated AMPK and ameliorate glycolipid metabolism in the streptozotocin-induced diabetic rats

  • Tingyuan Ren,
  • Yuping Zhu,
  • Jianquan Kan

DOI
https://doi.org/10.1080/10641963.2016.1259332
Journal volume & issue
Vol. 39, no. 4
pp. 330 – 338

Abstract

Read online

This study aimed to evaluate the effects of Zanthoxylum alkylamides on the glycolipid metabolism of rats with streptozotocin (STZ)-induced diabetes. Diabetic rats were given daily oral treatments of 2, 4, or 8 mg/kg bw alkylamides for 28 days. Alkylamides significantly decreased fasting blood glucose and fructosamine content, as well as relieved organ enlargement caused by diabetes. The serum and liver triglyceride, malondialdehyde, and free fatty-acid contents of rats with STZ-induced diabetes were significantly reduced. Total cholesterol in the liver also significantly decreased. Quantitative polymerase chain reaction (Q-PCR) and Western blot detected insignificantly increased (P > 0.05) mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK) in the skeletal muscle of diabetic rats. However, AMPK and p-AMPK (Thr172) protein expression levels significantly increased. The mRNA and protein expression levels of silencing information regulator 1 significantly increased. The mRNA expression levels of acetyl-CoA-carboxylase (ACC) and protein p-ACC (Ser79) also increased. The mRNA and protein expression levels of glucose transporter type 4 (GLUT4) were significantly upregulated in the skeletal muscle cell membranes of diabetic rats. Results indicated that alkylamides activated the AMPK-signaling pathway. Thus, inhibiting ACC activity reduced fatty-acid synthesis. The rapid translocation of GLUT4 mediated increased glucose transport rate and reduced blood glucose. Therefore, alkylamides can ameliorate glucose and lipid metabolism disorders in diabetic rats by activating the AMPK pathway.

Keywords