Inorganics (Apr 2022)

Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions

  • Ioanna Ioannou,
  • Andreas Delimitis,
  • Yaniv Gelbstein,
  • Theodora Kyratsi

DOI
https://doi.org/10.3390/inorganics10040051
Journal volume & issue
Vol. 10, no. 4
p. 51

Abstract

Read online

(Hf,Zr,Ti)Co(Sb,Sn) Solid solutions were prepared by mechanical-alloying followed by hot-press method as an attempt to reduce Hf concentration and therefore the material’s cost without negatively affecting the thermoelectric performance. To this end, two different methods were applied: (a) Hf substitution with its lighter and cheaper homologue Zr; and (b) fine tuning of carrier concentration by the substitution of Sb with Sn. The isoelectronic substitution of Hf with Zr was investigated in Hf0.6-xZrxTi0.4CoSb0.8Sn0.2 solid solutions and resulted in lower power factors and ZTs. However, the low thermal conductivity of Hf0.4Zr0.2Ti0.4CoSb0.8Sn0.2 contributed in achieving a relatively good ZT~0.67 at 970 K. The effect of charge carrier concentration was investigated by preparing Hf0.4Zr0.2Ti0.4CoSb1-ySny (y = 0.15–0.25) compounds. Hf0.4Zr0.2Ti0.4CoSb0.83Sn0.17 composition prepared by six hours milling reached the highest ZT of 0.77 at 960 K.

Keywords