Applied Sciences (Sep 2022)

A Performance Evaluation of the Alpha-Beta (α-β) Filter Algorithm with Different Learning Models: DBN, DELM, and SVM

  • Junaid Khan,
  • Kyungsup Kim

DOI
https://doi.org/10.3390/app12199429
Journal volume & issue
Vol. 12, no. 19
p. 9429

Abstract

Read online

In this paper, we present a new Multiple learning to prediction algorithm model that used three different combinations of machine-learning methods to improve the accuracy of the α-β filter algorithm. The parameters of α and β were tuned in dynamic conditions instead of static conditions. The proposed system was designed to use the deep belief network (DBN), the deep extreme learning machine (DELM), and the SVM as three different learning algorithms. Then these learned parameters were trained by the machine-learning algorithms tuned to the α-β filter algorithm as a prediction module, and they gave the final predicted results. The MAE and RMSE were used to evaluate the performance of the proposed α-β filter with different learning algorithms. Each algorithm recorded different best-case accuracy results; for the DBN, we achieved 3.60 and 2.61; for the DELM, we obtained the best-case result of 3.90 and 2.81; and finally, for the SVM, 4.0 and 3.21 were attained in terms of the RMSE and MAE, respectively, as compared to 5.21 and 3.95. When assessed in comparison with the typical alpha–beta filter algorithm, the proposed system provided results with better accuracy.

Keywords