Polish Journal of Chemical Technology (Dec 2023)
Experimental research on the removal characteristics of simulated radioactive aerosols by a cloud-type radioactive aerosol elimination system
Abstract
Radioactive aerosols in the confined workplace are a major source of internal exposure hazards for workers. Cloud-type radioactive aerosol elimination system (CRAES) have great potential for radioactive aerosol capture due to their high adsorption capacity, lack of cartridges and less secondary contamination. A CRAES was designed and constructed, and a FeOOH/rGO composite was directly prepared by a hydro-thermal method to characterise and analyse its morphology, chemical structure and removal efficiency for simulated radioactive aerosols. The results show that the FeOOH/rGO composite works in synergy with the CRAES to effectively improve the removal efficiency of simulated radioactive aerosols. A 30-minute simulated radioactive aerosol removal rate of 94.52% was achieved when using the experimentally optimized composite inhibitor amount of 2 mg/L FeOOH/rGO with 0.2 g/L PVA as a surfactant. Therefore, the CRAES coupled with the composite inhibitor FeOOH/rGO has broad application potential for the synergistic treatment of radioactive aerosols.
Keywords