BioMedical Engineering OnLine (Jul 2021)
Ribonucleic acid-binding protein CPSF6 promotes glycolysis and suppresses apoptosis in hepatocellular carcinoma cells by inhibiting the BTG2 expression
Abstract
Abstract Hepatocellular carcinoma (HCC) is currently the sixth most common malignancy and the second major cause of tumor-related deaths in the world. This study aimed to investigate the role of cleavage and polyadenylation factor-6 (CPSF6) and B-cell translocation gene 2 (BTG2) in regulating the glycolysis and apoptosis in HCC cells. The RNA and protein expression of CPSF6 and BTG2 in normal hepatocyte and HCC were, respectively, detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis and Western blot analysis. The viability and apoptosis of transfected Huh-7 cells were, respectively, analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay. The expression of apoptosis-related proteins and HK-2 in transfected Huh-7 cells was also detected by Western blot analysis. The levels of glucose and lactate in the culture supernatant of transfected Huh-7 cells were, respectively, detected with the glucose assay kit and lactate assay kit. The interaction of CPSF6 and BTG2 was confirmed by RNA binding protein immunoprecipitation (RIP) assay. As a result, CPSF6 expression was increased while BTG2 expression was decreased in Huh-7 cells. Interference with CPSF6 suppressed the viability and glycolysis, and promoted the apoptosis of Huh-7 cells. Furthermore, CPSF6 interacted with BTG2 and interference with CPSF6 upregulated the BTG2 expression and inhibited the protein kinase B (AKT)/extracellular signal-regulated kinase (ERK)/nuclear factor (NF)-κB pathway. Interference with BTG2 could partially reverse the above cell changes caused by interference with CPSF6. In conclusion, CPSF6 inhibited the BTG2 expression to promote glycolysis and suppress apoptosis in HCC cells by activating AKT/ERK/NF-κB pathway.
Keywords