Microorganisms (Jan 2019)

An Alternative Platform for Protein Expression Using an Innate Whole Expression Module from Metagenomic DNA

  • Dae-Eun Cheong,
  • So-Youn Park,
  • Ho-Dong Lim,
  • Geun-Joong Kim

DOI
https://doi.org/10.3390/microorganisms7010009
Journal volume & issue
Vol. 7, no. 1
p. 9

Abstract

Read online

Many integrated gene clusters beyond a single genetic element are commonly trapped as the result of promoter traps in (meta)genomic DNA libraries. Generally, a single element, which is mainly the promoter, is deduced from the resulting gene clusters and employed to construct a new expression vector. However, expression patterns of target proteins under the incorporated promoter are often inconsistent with those shown in clones harboring plasmids with gene clusters. These results suggest that the integrated set of gene clusters with diverse cis- and trans-acting elements is evolutionarily tuned as a complete set for gene expression, and is an expression module with all the components for the expression of a nested open reading frame (ORF). This possibility is further supported by truncation and/or serial deletion analysis of this module in which the expression of the nested ORF is highly fluctuated or reduced frequently, despite being supported by plentiful cis-acting elements in the spanning regions around the ORF such as the promoter, ribosome binding site (RBS), terminator, and 3′-/5′-UTRs for gene expression. Here, we examined whether an innate module with a naturally overexpressed gene could be considered as a scaffold for an expression system. For a proof-of-principle study, we mined a complete expression module with an innately overexpressed ORF in E. coli from a metagenomics DNA library, and incorporated it into a vector that had no regulatory element for expressing the insert. We obtained successful expression of several inserts such as MBP, GFPuv, β-glucosidase, and esterase using this simple construct without tuning and codon optimization of the target insert.

Keywords