High Temperature Materials and Processes (Oct 2024)
Research on the influence of cemented carbide micro-textured structure on tribological properties
Abstract
To examine how micro-textures with distinct structures affect the tribological properties of cemented carbide tool-cutting processes, various micro-textures were meticulously fabricated on YG8 cemented carbide blocks. Subsequently, friction and wear experiments were systematically conducted to examine the microstructure nuances resulting from the diverse structures. The influence of these micro-textures on the friction coefficient of cemented carbide and its underlying factors was comprehensively analyzed. To further investigate the impact of these micro-textures on the cutting force in cemented carbide tools, finite element analysis was conducted. Identical micro-textures used in the tribological experiment were applied to the tool, followed by milling simulations aimed at elucidating the impact of these varied micro-textures on the three-dimensional cutting force exerted by the tool. Empirical investigations and finite element analyses revealed that micro-textures characterized as parallel (parallel to the main cutting edge), perpendicular (perpendicular to the main cutting edge), and a combination of “parallel + perpendicular” significantly enhance the tribological properties of cemented carbide tools. This enhancement is evident in the reduction of both the friction coefficient and cutting force of the tool. Particularly noteworthy is the substantial efficacy of vertical micro-textures in minimizing both the frictional force and cutting force, resulting in a noteworthy reduction of the primary cutting force by more than 60% and a concomitant alleviation of tool feeding force by approximately 25%.
Keywords