Life (Aug 2024)
The Potential of Enamel Matrix Derivative in Countering Bisphosphonate-Induced Effects in Osteoblasts
Abstract
The suppressive effect of bisphosphonates (BPs) on bone metabolism is considered to be a major cause of medication-related osteonecrosis of the jaw (MRONJ). Enamel matrix derivative (EMD) stimulates and activates growth factors, leading to the regeneration of periodontal tissues. In this study, we aimed to explore the potential of EMD in reversing the detrimental effects of BPs on human fetal osteoblasts (hFOBs) and osteosarcoma-derived immature osteoblasts (MG63s) by assessing cell viability, apoptosis, migration, gene expression, and protein synthesis. While the suppressive effect of zoledronate (Zol) on cell viability and migration was observed, the addition of EMD significantly mitigated this effect and enhanced cell viability and migration. Furthermore, an increased apoptosis rate induced by Zol was decreased with the addition of EMD. The decreased gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and the receptor activator of nuclear factors kappa-B ligand (RANKL) caused by BP treatment was reversed by the co-addition of EMD to hFOB cells. This trend was also observed for ALP and bone sialoprotein (BSP) levels in MG63 cells. Furthermore, suppressed protein levels of OC, macrophage colony-stimulating factor (M-CSF), BSP, and type 1 collagen (COL1) were recovered following the addition of EMD. This finding suggests that EMD could mitigate the effects of BPs, resulting in the recovery of cell survival, migration, and gene and protein expression. However, the behavior of the osteoblasts was not fully restored, and further studies are necessary to confirm their effects at the cellular level and to assess their clinical usefulness in vivo for the prevention and treatment of MRONJ.
Keywords