Earth, Planets and Space (Jun 2024)

Dual-frequency to five-frequency real-time precise point positioning using new BDS-3 PPP-B2b service

  • Haochen Yang,
  • Xiaodong Ren,
  • Mingxiu Liu,
  • Xiaohong Zhang

DOI
https://doi.org/10.1186/s40623-024-02031-6
Journal volume & issue
Vol. 76, no. 1
pp. 1 – 15

Abstract

Read online

Abstract BeiDou global navigation satellite system (BDS-3), a developed GNSS by China, has the ability to support five different signals, including B1I, B3I, B1C, B2a, and B2b. Meanwhile, BDS-3 has officially provided the satellite-based precise point positioning (PPP) service through the B2b signal (PPP-B2b) since 2021. It’s necessary to conduct a comprehensive analysis on multi-frequency PPP with PPP-B2b corrections. In this study, a multi-frequency undifferenced and uncombined PPP model (UDUC) using PPP-B2b corrections was employed to investigate dual-frequency to five-frequency real-time PPP performance. The results show that compared with the conventional dual-frequency solutions, multi-frequency solutions can improve both the convergence performances and positioning accuracy of PPP-B2b service, especially during the convergence stage. The quad-frequency and five-frequency solutions can achieve the best positioning performance. The static solutions of multi-frequency PPP models reach the centimeter-level accuracy after convergence. In kinematic mode, the convergence time of the five-frequency PPP results is reduced by 23.5% compared with the dual-frequency results. The root mean square (RMS) errors of the five-frequency PPP in the E, N, and U components are 7.1 cm, 4.8 cm, and 12.4 cm, which are improved by 6.8%, 11.5%, and 5.5%, respectively. Graphical Abstract

Keywords