Mathematics (Apr 2023)

Autonomous Multi-UAV Path Planning in Pipe Inspection Missions Based on Booby Behavior

  • Faten Aljalaud,
  • Heba Kurdi,
  • Kamal Youcef-Toumi

DOI
https://doi.org/10.3390/math11092092
Journal volume & issue
Vol. 11, no. 9
p. 2092

Abstract

Read online

This paper presents a novel path planning heuristic for multi-UAV pipe inspection missions inspired by the booby bird’s foraging behavior. The heuristic enables each UAV to find an optimal path that minimizes the detection time of defects in pipe networks while avoiding collisions with obstacles and other UAVs. The proposed method is compared with four existing path planning algorithms adapted for multi-UAV scenarios: ant colony optimization (ACO), particle swarm optimization (PSO), opportunistic coordination, and random schemes. The results show that the booby heuristic outperforms the other algorithms in terms of mean detection time and computational efficiency under different settings of defect complexity and number of UAVs.

Keywords