Spool (Jul 2024)

Therblig to Robot

  • Dagmar Reinhardt,
  • Lynn Masuda

DOI
https://doi.org/10.47982/spool.2024.1.03
Journal volume & issue
Vol. 11, no. 1

Abstract

Read online

Industrial robotic arms commonly require specialist knowledge for machine functions. Specifically, training cobots for work sequences is time consuming and complex when task complexity increases, such as through differentiation in tool adaptations or work processes. This research explores robot versatility for a context of domestic environments (such as a kitchen/workshop), where work processes are approached as a hybrid scenario, with setup for integration of a tool variety whereby human-robot teams collaborate. The paper discusses a) novel workflows based on a palette of work tools adopted for robot tooling to translate manual human tasks to human-robot tasks; b) an initial script series for work processes that represents modelling, planning, simulation, and implementation; c) a framework for task division through action sets based on Therbligs that supports users; and d) an empirical evaluation of the approach through a series of user studies. In a post-carbon context, previously autonomous robots are required to become more versatile in terms of productivity, scalability, safety and skill criteria and environmental impact. This research extends beyond traditional kitchens to include workshop and fabrication scenarios characterised by the complexity and variability of task applications, guided by detailed action packages that explore robotic work for modular components or fluid and liquid materials; heat and assembly-based processing; and bridges from food preparation to fabrication and manufacturing tasks.

Keywords