PLOS Global Public Health (Jan 2022)

Optimal use of COVID-19 Ag-RDT screening at border crossings to prevent community transmission: A modeling analysis

  • Joshua M. Chevalier,
  • Karla Therese L. Sy,
  • Sarah J. Girdwood,
  • Shaukat Khan,
  • Heidi Albert,
  • Amy Toporowski,
  • Emma Hannay,
  • Sergio Carmona,
  • Brooke E. Nichols

Journal volume & issue
Vol. 2, no. 5

Abstract

Read online

Countries around the world have implemented restrictions on mobility, especially cross-border travel to reduce or prevent SARS-CoV-2 community transmission. Rapid antigen testing (Ag-RDT), with on-site administration and rapid turnaround time may provide a valuable screening measure to ease cross-border travel while minimizing risk of local transmission. To maximize impact, we developed an optimal Ag-RDT screening algorithm for cross-border entry. Using a previously developed mathematical model, we determined the daily number of imported COVID-19 cases that would generate no more than a relative 1% increase in cases over one month for different effective reproductive numbers (Rt) and COVID-19 prevalence within the recipient country. We then developed an algorithm—for differing levels of Rt, arrivals per day, mode of travel, and SARS-CoV-2 prevalence amongst travelers—to determine the minimum proportion of people that would need Ag-RDT testing at border crossings to ensure no greater than the relative 1% community spread increase. When daily international arrivals and/or COVID-19 prevalence amongst arrivals increases, the proportion of arrivals required to test using Ag-RDT increases. At very high numbers of international arrivals/COVID-19 prevalence, Ag-RDT testing is not sufficient to prevent increased community spread, especially when recipient country prevalence and Rt are low. In these cases, Ag-RDT screening would need to be supplemented with other measures to prevent an increase in community transmission. An efficient Ag-RDT algorithm for SARS-CoV-2 testing depends strongly on the epidemic status within the recipient country, volume of travel, proportion of land and air arrivals, test sensitivity, and COVID-19 prevalence among travelers.