Diagnostics (Nov 2023)

Depth-Resolved Attenuation Mapping of the Vaginal Wall under Prolapse and after Laser Treatment Using Cross-Polarization Optical Coherence Tomography: A Pilot Study

  • Ekaterina Gubarkova,
  • Arseniy Potapov,
  • Alexander Moiseev,
  • Elena Kiseleva,
  • Darya Krupinova,
  • Ksenia Shatilova,
  • Maria Karabut,
  • Andrey Khlopkov,
  • Maria Loginova,
  • Stefka Radenska-Lopovok,
  • Grigory Gelikonov,
  • Gennady Grechkanev,
  • Natalia Gladkova,
  • Marina Sirotkina

DOI
https://doi.org/10.3390/diagnostics13223487
Journal volume & issue
Vol. 13, no. 22
p. 3487

Abstract

Read online

Vaginal wall prolapse is the most common type of pelvic organ prolapse and is mainly associated with collagen bundle changes in the lamina propria. Neodymium (Nd:YAG) laser treatment was used as an innovative, minimally invasive and non-ablative procedure for the treatment of early-stage vaginal wall prolapse. The purpose of this pilot study was to assess connective tissue changes in the vaginal wall under prolapse without treatment and after Nd:YAG laser treatment using cross-polarization optical coherence tomography (CP OCT) with depth-resolved attenuation mapping. A total of 26 freshly excised samples of vaginal wall from 26 patients with age norm (n = 8), stage I–II prolapses without treatment (n = 8) and stage I–II prolapse 1–2 months after Nd:YAG laser treatment (n = 10) were assessed. As a result, for the first time, depth-resolved attenuation maps of the vaginal wall in the B-scan projection in the co- and cross-polarization channels were constructed. Two parameters within the lamina propria were target calculated: the median value and the percentages of high (≥4 mm−1) and low (−1) attenuation coefficient values. A significant (p p < 0.0001) increase in the parameters compared to the normal level was also observed. Notably, in the cross-channel, both parameters showed a greater difference between the groups than in the co-channel. Therefore, using the cross-channel achieved more reliable differentiation between the groups. To conclude, attenuation coefficient maps allow visualization and quantification of changes in the condition of the connective tissue of the vaginal wall. In the future, CP OCT could be used for in vivo detection of early-stage vaginal wall prolapse and for monitoring the effectiveness of treatment.

Keywords