Malaria Journal (Oct 2011)

Placental <it>Plasmodium falciparum </it>malaria infection: Operational accuracy of HRP2 rapid diagnostic tests in a malaria endemic setting

  • Montague Mark,
  • Riches Clare,
  • Tumwine Lynette K,
  • Nassali Mercy,
  • Tibenderana James K,
  • Kyabayinze Daniel J,
  • Counihan Helen,
  • Hamade Prudence,
  • Van Geertruyden Jean-Pierre,
  • Meek Sylvia

DOI
https://doi.org/10.1186/1475-2875-10-306
Journal volume & issue
Vol. 10, no. 1
p. 306

Abstract

Read online

Abstract Background Malaria has a negative effect on the outcome of pregnancy. Pregnant women are at high risk of severe malaria and severe haemolytic anaemia, which contribute 60-70% of foetal and perinatal losses. Peripheral blood smear microscopy under-estimates sequestered placental infections, therefore malaria rapid diagnostic tests (RDTs) detecting histidine rich protein-2 antigen (HRP-2) in peripheral blood are a potential alternative. Methods HRP-2 RDTs accuracy in detecting malaria in pregnancy (MIP >28 weeks gestation) and placental Plasmodium falciparum malaria (after childbirth) were conducted using Giemsa microscopy and placental histopathology respectively as the reference standard. The study was conducted in Mbale Hospital, using the midwives to perform and interpret the RDT results. Discordant results samples were spot checked using PCR techniques. Results Among 433 febrile women tested, RDTs had a sensitivity of 96.8% (95% CI 92-98.8), specificity of 73.5% (95% CI 67.8-78.6), a positive predictive value (PPV) of 68.0% (95% CI 61.4-73.9), and negative predictive value (NPV) of 97.5% (95% CI 94.0-99.0) in detecting peripheral P. falciparum malaria during pregnancy. At delivery, in non-symptomatic women, RDTs had a 80.9% sensitivity (95% CI 57.4-93.7) and a 87.5% specificity (95%CI 80.9-92.1), PPV of 47.2% (95% CI 30.7-64.2) and NPV of 97.1% (95% CI 92.2-99.1) in detecting placental P. falciparum infections among 173 samples. At delivery, 41% of peripheral infections were detected by microscopy without concurrent placental infection. The combination of RDTs and microscopy improved the sensitivity to 90.5% and the specificity to 98.4% for detecting placental malaria infection (McNemar's X 2> 3.84). RDTs were not superior to microscopy in detecting placental infection (McNemar's X 2 Conclusion Use of HRP-2 RDTs to detect malaria in pregnancy in symptomatic women was accurate when performed by midwives. A combination of RDTs and microscopy provided the best means of detecting placental malaria. RDTs were not superior to microscopy in detecting placental infection. With a high sensitivity and specificity, RDTs could be a useful tool for assessing malaria in pregnancy, with further (cost-) effectiveness studies.