Remote Sensing (May 2022)
Bayesian Cloud Detection over Land for Climate Data Records
Abstract
Cloud detection is a necessary step in the generation of land surface temperature (LST) climate data records (CDRs) and affects data quality and uncertainty. We present here a sensor-independent Bayesian cloud detection algorithm and show that it is suitable for use in the production of LST CDRs. We evaluate the performance of the cloud detection with reference to two manually masked datasets for the Advanced Along-Track Scanning Radiometer (AATSR) and find a 7.9% increase in the hit rate and 4.9% decrease in the false alarm rate when compared to the operational cloud mask. We then apply the algorithm to four instruments aboard polar-orbiting satellites, which together can produce a global, 25-year LST CDR: the second Along-Track Scanning Radiometer (ATSR-2), AATSR, the Moderate Resolution Spectroradiometer (MODIS Terra) and the Sea and Land Surface Temperature Radiometer (SLSTR-A). The Bayesian cloud detection hit rate is assessed with respect to in situ ceilometer measurements for periods of overlap between sensors. The consistency of the hit rate is assessed between sensors, with mean differences in the cloud hit rate of 4.5% for ATSR-2 vs. AATSR, 4.9% for AATSR vs. MODIS, and 2.5% for MODIS vs. SLSTR-A. This is important because consistent cloud detection performance is needed for the observational stability of a CDR. The application of a sensor-independent cloud detection scheme in the production of CDRs is thus shown to be a viable approach to achieving LST observational stability over time.
Keywords