Heliyon (Apr 2024)

Circuital modelling in muscle tissue impedance measurements

  • Fabrizio Clemente,
  • Francesco Amato,
  • Sarah Adamo,
  • Michela Russo,
  • Francesca Angelone,
  • Alfonso Maria Ponsiglione,
  • Maria Romano

Journal volume & issue
Vol. 10, no. 7
p. e28723

Abstract

Read online

Electrical impedance spectroscopy (EIS) stands as a widely employed characterization technique for studying muscular tissue in both physio/pathological conditions. This methodology commonly involves modeling tissues through equivalent electrical circuits, facilitating a correlation between electrical parameters and physiological properties. Within existing literature, diverse equivalent electrical circuits have been proposed, varying in complexity and fitting properties. However, to date, none have definitively proven to be the most suiTable for tissue impedance measurements. This study aims to outline a systematic methodology for EIS measurements and to compare the performances of three widely used electrical circuits in characterizing both physiological and pathological muscle tissue conditions. Results highlight that, for optimal fitting with electrical parameters relevant to tissue characterization, the choice of the circuit to be fitted closely hinges on the specific measurement objectives, including measurement parameters and associated physiological features. Naturally, this necessitates a balance between simplicity and fitting accuracy.

Keywords