BMC Neuroscience (Mar 2005)

BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury

  • Hill William,
  • Hess David,
  • Martin-Studdard Angeline,
  • Kim Sunjun,
  • Wimborne Hereward,
  • Soltau Thomas,
  • Bartley John,
  • Waller Jennifer,
  • Carroll James

DOI
https://doi.org/10.1186/1471-2202-6-15
Journal volume & issue
Vol. 6, no. 1
p. 15

Abstract

Read online

Abstract Background Mechanisms that affect recovery from fetal and neonatal hypoxic-ischemic (H-I) brain injury have not been fully elucidated. The incidence of intrapartum asphyxia is approximately 2.5%, but the occurrence of adverse clinical outcome is much lower. One of the factors which may account for this relatively good outcome is the process of neurogenesis, which has been described in adult animals. We used a neonatal mouse model to assess new cells in the hippocampus after H-I injury. Results Neonatal mice underwent permanent unilateral carotid ligation on the seventh postnatal day followed by exposure to 8% hypoxia for 75 minutes. The presence of new cells was determined by bromodeoxyuridine (BrdU) incorporation into cells with sacrifice of the animals at intervals. Brain sections were stained for BrdU in combination with neuronal, glial, endothelial and microglial stains. We found a significant increase in BrdU-positive cells in the neonatal mouse hippocampus in the injured area compared to the non-injured area, most prominent in the dentate gyrus (DG) (154.5 ± 59.6 v. 92.9 ± 32.7 at 3 days after injury; 68.9 ± 23.4 v. 52.4 ± 17.1 at 35 days after injury, p Conclusion These findings demonstrate that the neonatal animal responds to brain injury with neurogenesis, much like the adult animal. In addition, H-I insult leads to more neurogenesis than hypoxia alone. This process may play a role in the recovery of the neonatal animal from H-I insult, and if so, enhancement of the process may improve recovery.