PLoS ONE (Jan 2017)

Cloning and expression of genes encoding heat shock proteins in Liriomyza trifolii and comparison with two congener leafminer species.

  • Ya-Wen Chang,
  • Jing-Yun Chen,
  • Ming-Xing Lu,
  • Yuan Gao,
  • Zi-Hua Tian,
  • Wei-Rong Gong,
  • Chang-Sheng Dong,
  • Yu-Zhou Du

DOI
https://doi.org/10.1371/journal.pone.0181355
Journal volume & issue
Vol. 12, no. 7
p. e0181355

Abstract

Read online

The polyphagous agromyzid fly, Liriomyza trifolii, is a significant and important insect pest of ornamental and vegetable crops worldwide. The adaptation of insects to different environments is facilitated by heat shock proteins (HSPs), which play an important role in acclimation to thermal stress. In this study, we cloned and characterized five HSP-encoding genes of L. trifolii (Lthsp20, Lthsp40, Lthsp60, Lthsp70, and Lthsp90) and monitored their expression under different thermal stresses using real-time quantitative PCR. Pupae of L. trifolii were exposed to 19 different temperatures ranging from -20 to 45°C. The results revealed that Lthsp20, Lthsp40, Lthsp70 and Lthsp90 were significantly upregulated in response to both heat and cold stress, while Lthsp60 was induced only by heat temperatures. The temperatures of the onset (Ton) and maximal (Tmax) expression of the five Lthsps were also determined and compared with published Ton and Tmax values of homologous genes in L. sativae and L. huidobrensis. Although L. trifolii occurs primarily in southern China, it has cold tolerance comparable with the other two Liriomyza species. Based on the heat shock proteins expression patterns, L. trifolii has the capacity to tolerate extreme temperatures and the potential to disseminate to northern regions of China.