Materials Today Quantum (Jun 2025)

Magnetic order through Kondo coupling to quantum spin liquids

  • M.A. Keskiner,
  • M.Ö. Oktel,
  • Natalia B. Perkins,
  • Onur Erten

Journal volume & issue
Vol. 6
p. 100038

Abstract

Read online

We study the emergence of magnetic order in localized spins that interact solely through their coupling to a Kitaev-type spin liquid. Using three toy models – the Kitaev model, the Yao–Lee model, and a square-lattice generalization of the Kitaev model – we calculate the effective exchange Hamiltonians mediated by the fractionalized excitations of these spin liquids. This setup is analogous to a Kondo lattice model, where conduction electrons are replaced by itinerant Majorana fermions. In the Kitaev model, our results show that the lowest-order perturbation theory generates short-range interactions with modified couplings and extending to sixth order introduces longer-range interactions while preserving the quantum spin-liquid ground state. Models involving more Majorana flavors on honeycomb and square lattices exhibit more complex behavior. The honeycomb Yao–Lee model with three flavors of itinerant Majorana fermions generates long-range RKKY-type interactions, leading to antiferromagnetic order and partial gapping of the Majorana fermion spectrum. In contrast, the square-lattice model produces a combination of anisotropic short- and long-range interactions, which can give rise to either a dimerized quantum paramagnetic state or an Ising antiferromagnet, depending on the parameters. These results illustrate the rich variety of magnetic orders that can be mediated by Kitaev-type spin liquids.

Keywords