Communications Biology (Jun 2024)

SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues

  • Bin Zhang,
  • Zilong Hou,
  • Yuning Yang,
  • Ka-chun Wong,
  • Haoran Zhu,
  • Xiangtao Li

DOI
https://doi.org/10.1038/s42003-024-06332-0
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Proteins and nucleic-acids are essential components of living organisms that interact in critical cellular processes. Accurate prediction of nucleic acid-binding residues in proteins can contribute to a better understanding of protein function. However, the discrepancy between protein sequence information and obtained structural and functional data renders most current computational models ineffective. Therefore, it is vital to design computational models based on protein sequence information to identify nucleic acid binding sites in proteins. Here, we implement an ensemble deep learning model-based nucleic-acid-binding residues on proteins identification method, called SOFB, which characterizes protein sequences by learning the semantics of biological dynamics contexts, and then develop an ensemble deep learning-based sequence network to learn feature representation and classification by explicitly modeling dynamic semantic information. Among them, the language learning model, which is constructed from natural language to biological language, captures the underlying relationships of protein sequences, and the ensemble deep learning-based sequence network consisting of different convolutional layers together with Bi-LSTM refines various features for optimal performance. Meanwhile, to address the imbalanced issue, we adopt ensemble learning to train multiple models and then incorporate them. Our experimental results on several DNA/RNA nucleic-acid-binding residue datasets demonstrate that our proposed model outperforms other state-of-the-art methods. In addition, we conduct an interpretability analysis of the identified nucleic acid binding residue sequences based on the attention weights of the language learning model, revealing novel insights into the dynamic semantic information that supports the identified nucleic acid binding residues. SOFB is available at https://github.com/Encryptional/SOFB and https://figshare.com/articles/online_resource/SOFB_figshare_rar/25499452 .