Scientific Reports (Feb 2024)

Bioinformatics analysis for the identification of Sprouty-related EVH1 domain-containing protein 3 expression and its clinical significance in thyroid carcinoma

  • Xiaowei Zhang,
  • Xiangwei Meng,
  • Pengyun Wang,
  • Chong Luan,
  • Haiming Wang

DOI
https://doi.org/10.1038/s41598-024-55187-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract The poorly differentiated thyroid carcinoma (THCA) subtype is associated with an aggressive disease course, a less favorable overall prognosis, and an increased risk of distant organ metastasis. In this study, our objective was to explore the potential utility of the Sprouty-related EVH1 domain-containing protein 3 (SPRED3) as a biomarker for early diagnosis and prognosis in THCA patients. The differentially expressed prognostic-related genes associated with THCA were identified by querying The Cancer Genome Atlas (TCGA) database. The difference in the expression of the SPRED3 gene between thyroid carcinoma (THCA) tissues and normal tissues was analyzed using data from The Cancer Genome Atlas (TCGA) and further validated through immunohistochemistry. Univariate and multivariate Cox regression models were used, along with clinical information from THCA patients, to analyze the prognostic value of the SPRED3 gene in THCA patients. Functional enrichment analysis was subsequently performed to elucidate the molecular mechanisms underlying the regulatory effects of the SPRED3 gene on thyroid carcinoma. Additionally, we calculated the percentage of infiltrating immune cells in THCA patients and evaluated their correlation with SPRED3 gene expression. Compared with those in noncancerous thyroid tissue, the gene and protein expression levels of SPRED3 were found to be elevated in thyroid carcinoma tissues. Furthermore, the expression of SPRED3 in thyroid carcinoma exhibited significant correlations with tumor location, histological grade, pathological stage, and tumor node metastasis classification (TNM) stage. Univariate and multivariate Cox proportional hazards (Cox) regression analyses demonstrated that SPRED3 could serve as an independent prognostic factor for predicting the overall survival of THCA patients. The results of functional enrichment analysis suggested the potential involvement of SPRED3 in the regulation of extracellular matrix organization, epidermal development, signaling receptor activator activity, skin development, receptor ligand activity, glycosaminoglycan binding, neuroactive ligand‒receptor interaction, the IL-17 signaling pathway, and the PI3K-Akt signaling pathway. Additionally, there were significant correlations between the expression level of the SPRED3 gene and the infiltration of various immune cells (eosinophils, central memory T cells, neutrophils, macrophages, and NK cells) within the thyroid tumor microenvironment. SPRED3 can be used as a prognostic biomarker in patients with THCA could potentially be therapeutic target for THCA.