Tribology in Industry (Dec 2014)

Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding

  • D. Kekes,
  • P. Psyllaki,
  • M. Vardavoulias

Journal volume & issue
Vol. 36, no. 4
pp. 361 – 374

Abstract

Read online

The influence of the cermet fraction in cermet/ metal composite coatings developed by High-Velocity Oxyfuel Flame (HVOF) spraying on their tribological behaviour was studied. Five series of coatings, each one containing different proportion of cermet-metal components, prepared by premixing commercially available feedstocks of NiCrFeBSiC metallic and WC-Co/Cr cermet powders were deposited on AISI 304 stainless steel substrate. The microstructure of as-sprayed coatings was characterized by partial decomposition of the WC particles, lamellar morphology and micro-porosity among the solidified splats. Tribological behavior was studied under sliding friction conditions using a Si3N4 ball as counterbody and the friction coefficient and volume loss were determined as a function of the cermet fraction. Microscopic examinations of the wear tracks and relevant cross sections identified the wear mechanisms involved. Coatings containing only the metallic phase were worn out through a combination of ploughing, micro-cracking and splat exfoliation, whilst those containing only the cermet phase primarily by micro-cracking at the individual splat scale. The wear mechanisms of the composite coatings were strongly affected by their randomly stratified structure. In-depth cracks almost perpendicular to the coating/ substrate interface occurring at the wear track boundaries resulted in cermet trans-splat fracture.

Keywords