Forum of Mathematics, Sigma (Jan 2021)

Rigid automorphisms of linking systems

  • George Glauberman,
  • Justin Lynd

DOI
https://doi.org/10.1017/fms.2021.17
Journal volume & issue
Vol. 9

Abstract

Read online

A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $2$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G, then it is of $p'$-order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$-subgroups. We present two applications of this last result, one to tame fusion systems.

Keywords