Scientific Reports (Nov 2023)

Copula-based modeling and simulation of 3D systems of curved fibers by isolating intrinsic fiber properties and external effects

  • Matthias Weber,
  • Andreas Grießer,
  • Dennis Mosbach,
  • Erik Glatt,
  • Andreas Wiegmann,
  • Volker Schmidt

DOI
https://doi.org/10.1038/s41598-023-46644-5
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract In this paper we lay the foundation for data-driven 3D analysis of virtual fiber systems with respect to their microstructure and functionality. In particular, we develop a stochastic 3D model for systems of curved fibers similar to nonwovens, which is fitted to tomographic image data. By systematic variations of model parameters, efficient computer-based scenario analyses can be performed to get a deeper insight how effective properties of this type of functional materials depend on their 3D microstructure. In a first step, we consider single fibers as polygonal tracks which can be modeled by a third-order Markov chain. For constructing the transition function of the Markov chain, we formalize the intuitive notions of intrinsic fiber properties and external effects and build a copula-based transition function such that both aspects can be varied independently. Using this single-fiber model, in a second step we derive a model for the entire fiber system observed in a bounded sampling window and fit it to two different 3D datasets of nonwovens measured by CT imaging. Considering various geometric descriptors of the 3D microstructure related to effective properties of the pore space, we evaluate the goodness of model fit by comparing geometric descriptors of the 3D morphology of model realizations with those of tomographic image data.