Pharmacological Research (Aug 2024)

Integrins play a role in stress relaxation of perivascular adipose tissue

  • Stephanie W. Watts,
  • Janice M. Thompson,
  • Sudin Bhattacharya,
  • Vishal Panda,
  • Leah Terrian,
  • Andres Contreras,
  • Rance Nault

Journal volume & issue
Vol. 206
p. 107269

Abstract

Read online

Perivascular adipose tissue (PVAT) is known for being anti-contractile in healthy tissues. We discovered a new function of PVAT, the ability to stress relax and maintain a tone in response to a stretch. This is of note because stress relaxation has been attributed to smooth muscle, of which PVAT has none that is organized in a functional layer. We test the hypothesis the interactions of integrins with collagen play a role in stress relaxation. Our model is the thoracic aorta of the male Dahl SS rat. The PVAT and aorta were physically separated for most assays. Results from single nuclei RNA sequencing (snRNAseq) experiments, histochemistry and isometric contractility were also used. Masson Trichrome staining made evident the expression of collagen in PVAT. From snRNA seq experiments of the PVAT, mRNA for multiple collagen and integrin isoforms were detected: the α1 and β1 integrin were most highly expressed. Pharmacological inhibition of integrin/collagen interaction was effected by the specific α1β1 distintegrin obtustatin or general integrin inhibitor RGD peptide. RGD peptide but not obtustatin increased the stress relaxation. Cell-cell communication inference identified integrins αv and α5, two major RGD motif containing isoforms, as potential signaling partners of collagens. Collectively, these findings validate that stress relaxation can occur in a non-smooth muscle tissue, doing so in part through integrin-collagen interactions that may not include α1β1 heterodimers. The importance of this lies in considering PVAT as a vascular layer that possesses mechanical functions.

Keywords