Mathematics (Jul 2021)

Integral Formulas for a Foliation with a Unit Normal Vector Field

  • Vladimir Rovenski

DOI
https://doi.org/10.3390/math9151764
Journal volume & issue
Vol. 9, no. 15
p. 1764

Abstract

Read online

In this article, we prove integral formulas for a Riemannian manifold equipped with a foliation F and a unit vector field N orthogonal to F, and generalize known integral formulas (due to Brito-Langevin-Rosenberg and Andrzejewski-Walczak) for foliations of codimension one. Our integral formulas involve Newton transformations of the shape operator of F with respect to N and the curvature tensor of the induced connection on the distribution D=TF⊕span(N), and this decomposition of D can be regarded as a codimension-one foliation of a sub-Riemannian manifold. We apply our formulas to foliated (sub-)Riemannian manifolds with restrictions on the curvature and extrinsic geometry of the foliation.

Keywords