International Journal of Electrical Power & Energy Systems (Oct 2024)

Electric shock fault identification method based on DWT-AE-BPNN for residual current devices in power distribution systems

  • Binlong Zhang,
  • Si Guo,
  • Shuang Wu,
  • Wei Gao

Journal volume & issue
Vol. 161
p. 110144

Abstract

Read online

The protection dead-zone and threshold setting difficulties of the residual current devices (RCDs) in low-voltage distribution networks may lead to the misidentification of electric shock fault, resulting in severe life-threatening accidents. This paper proposes an electric shock fault identification method based on artificial intelligence for RCDs. Firstly, Mallat discrete wavelet transform (DWT) is applied to efficiently extract non-stationary electric shock feature signals from the total residual current with various noises, preventing weak non-stationary electric shock feature signals from being filtered out. Based on the average and maximum components of the signal mutation, an adaptive threshold can be determined to detect electric shock accurately, avoiding the false activation of RCDs caused by load fluctuations. Subsequently, an autoencoder (AE) is built to mine the non-linear features in which the signal of electric shock on living gradually rises and the signal of electric shock on non-living remains stable. Finally, a back propagation neural network (BPNN) is trained to classify the electric shock types from the non-linear features. The simulation and experiment have been conducted to obtain total residual current data under different conditions, and the electric shock fault real-time identification hardware platforms are developed. The accuracy of electric shock fault detection and classification can reach 100 %, which has advanced its practical applicability.

Keywords