International Journal of Group Theory (May 2024)

On some groups whose subnormal subgroups are contranormal-free

  • Leonid Kurdachenko,
  • Patrizia Longobardi,
  • Mercede Maj

DOI
https://doi.org/10.22108/ijgt.2024.139136.1871
Journal volume & issue
Vol. 14, no. 2
pp. 99 – 115

Abstract

Read online

If $G$ is a group, a subgroup $H$ of $G$ is said to be contranormal in $G$ if $H^G = G$, where $H^G$ is the normal closure of $H$ in $G$. We say that a group is contranormal-free if it does not contain proper contranormal subgroups. Obviously, a nilpotent group is contranormal-free. Conversely, if $G$ is a finite contranormal-free group, then $G$ is nilpotent. We study (infinite) groups whose subnormal subgroups are contranormal-free. We prove that if $G$ is a group which contains a normal nilpotent subgroup $A$ such that $G/A$ is a periodic Baer group, and every subnormal subgroup of $G$ is contranormal-free, then $G$ is generated by subnormal nilpotent subgroups; in particular $G$ is a Baer group. Furthermore, if $G$ is a group which contains a normal nilpotent subgroup $A$ such that the $0$-rank of $A$ is finite, the set $\Pi(A)$ is finite, $G/A$ is a Baer group, and every subnormal subgroup of $G$ is contranormal-free, then $G$ is a Baer group.

Keywords