Нанотехнологии в строительстве (Jun 2023)

Anti-icing coating based on silicone resin SILRES® MSE100

  • Valentina I. Loganina,
  • Svetlana N. Kislitsyna,
  • Evgenia V.Tkach,
  • Irina V. Stepina

DOI
https://doi.org/10.15828/2075-8545-2023-15-3-211-219
Journal volume & issue
Vol. 15, no. 3
pp. 211 – 219

Abstract

Read online

ABSTRACT: Introduction. The study is aimed at obtaining an anti-icing coating for building structures by creating a hydrophobic surface layer, which is regulated by surface energy and surface topography. Materials and methods. Acrylic resins A-01 and DEGALAN®, high-chlorinated polyethylene resin HCPE and silicone resin SILRES® MSE 100 were used in the research. Aerosil R 972 nanoparticles were used as a filler. The anti-icing properties of the coating were evaluated by the contact angle of the water drop with the coating, the static and dynamic contact angle, the wetting hysteresis, and the adhesion of ice to the superhydrophobic surface. Results and discussions. We have found that coatings based on acrylic resins A-01, DEGALAN®, high chlorinated polyethylene resin HCPE and silicone resin SILRES® MSE100 20% concentration do not provide superhydrophobic properties. The superhydrophobic effect is retained by coatings based on SILRES® MSE100 silicone resin 5% and 10% concentration. The force of detachment of a drop from a coating based on SILRES® MSE100 silicone resin at a 10% concentration is 3 times less, which ensures an easier rolling of a water drop from the surface and its anti-icing properties. The amount of ice on an untreated surface is 0.59 kg/m2, and on a surface treated with a composition based on SILRES® MSE100 silicone resin, it is 0.15 kg/m2. Conclusions. An anti-icing coating composition based on SILRES® MSE100 silicone resin has been developed. The proposed composition forms a coating characterized by anti-icing properties that remain in operation

Keywords