PLoS Genetics (Feb 2023)

A genetic strategy to measure insulin signaling regulation and physiology in Drosophila.

  • Deborah D Tsao,
  • Kathleen R Chang,
  • Lutz Kockel,
  • Sangbin Park,
  • Seung K Kim

DOI
https://doi.org/10.1371/journal.pgen.1010619
Journal volume & issue
Vol. 19, no. 2
p. e1010619

Abstract

Read online

Insulin regulation is a hallmark of health, and impaired insulin signaling promotes metabolic diseases like diabetes mellitus. However, current assays for measuring insulin signaling in all animals remain semi-quantitative and lack the sensitivity, tissue-specificity or temporal resolution needed to quantify in vivo physiological signaling dynamics. Insulin signal transduction is remarkably conserved across metazoans, including insulin-dependent phosphorylation and regulation of Akt/Protein kinase B. Here, we generated transgenic fruit flies permitting tissue-specific expression of an immunoepitope-labelled Akt (AktHF). We developed enzyme-linked immunosorption assays (ELISA) to quantify picomolar levels of phosphorylated (pAktHF) and total AktHF in single flies, revealing dynamic tissue-specific physiological regulation of pAktHF in response to fasting and re-feeding, exogenous insulin, or targeted genetic suppression of established insulin signaling regulators. Genetic screening revealed Pp1-87B as an unrecognized regulator of Akt and insulin signaling. Tools and concepts here provide opportunities to discover tissue-specific regulators of in vivo insulin signaling responses.