Theoretical and Applied Mechanics Letters (Jan 2016)
Design of multi-layered porous fibrous metals for optimal sound absorption in the low frequency range
Abstract
We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi-layered PFMs is calculated using impedance translation theorem. To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single-layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface porosity of the multi-layered fibrous.
Keywords