Journal of Marine Science and Engineering (May 2025)

Tectonic Impact on Organic Matter Enrichment in Paleozoic Marine Shales from the Yangtze Block, SW China

  • Dadong Liu,
  • Mingyang Xu,
  • Hui Chen,
  • Qian Cao,
  • Zhenxue Jiang,
  • Xianglu Tang

DOI
https://doi.org/10.3390/jmse13061028
Journal volume & issue
Vol. 13, no. 6
p. 1028

Abstract

Read online

The enrichment of organic matter in marine shale is a complex process involving tectonic–sedimentary interactions. The tectonic setting exerts critical control over sediment provenance, marine biota, and subaqueous environmental conditions in shale deposition. To unravel the mechanisms and differential controls of organic matter accumulation in marine shales across distinct tectonic regimes, this study systematically examines the Lower Cambrian Niutitang Formation and Lower Silurian Longmaxi Formation shales in the Upper Yangtze Block, SW China. Through comprehensive geochemical analyses encompassing total organic carbon (TOC) contents, as well as major and trace elements conducted on 31 shale samples from the Niutitang Formation and 30 samples from the Longmaxi Formation, we characterized their depositional environmental features and compared the distinctions between them. The results indicate that both the Cambrian Niutitang Formation and Silurian Longmaxi Formation shales exhibit high TOC contents, which range from 1.04% to 8.83% (average 4.73%) and from 0.29% to 6.14% (average 3.35%), respectively. Paleoenvironmental proxies demonstrate that the Cambrian Niutitang shales developed under suboxic–anoxic to even sulfidic conditions, with moderate water restriction and high paleoproductivity levels, while the Silurian Longmaxi Formation was deposited under suboxic–anoxic environments with strong water restriction and low-to-moderate paleoproductivity. Organic matter enrichment in the Cambrian Niutitang Formation followed a “productivity + preservation model”, whereas the Silurian Longmaxi Formation primarily adhered to a “preservation-dominated model”. The differentiation in organic enrichment mechanisms between these two marine sequences is attributed to the distinct tectonic settings during their deposition. During the Early Cambrian, the Upper Yangtze Block was in a rift trough tectonic setting influenced by upwelling currents, which triggered algal blooms and subsequent bacterial sulfate reduction (BSR) coupled with marine anoxia and sulfidation. In contrast, the Early Silurian period featured a semi-restricted marine basin with weaker upwelling activity, where organic matter enrichment was predominantly controlled by a restricted, reducing water column. Our findings demonstrate that tectonic settings exert fundamental controls on nutrient availability for algal communities and water column retention levels, serving as critical determinants for organic enrichment processes in marine shale systems.

Keywords