Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï (Sep 2020)

Застосування регресійних моделей для аналізу і прогнозування показників якості фінансової діяльності підприємства

  • Nataliia V. Kuznietsova,
  • Zlata S. Chernysh

DOI
https://doi.org/10.20535/SRIT.2308-8893.2020.2.05
Journal volume & issue
no. 2

Abstract

Read online

Досліджено задачу прогнозування успішності діяльності компанії на основі її фінансових показників на базі регресійних моделей. Побудовано множину моделей на основі лінійної множинної регресії, авторегресії з ковзним середнім, авторегресії з інтегрованим ковзним середнім та сезонної моделі авторегресії з інтегрованим ковзним середнім для прогнозування абсолютної величини фінансових показників. Проведено експериментальне дослідження на реальних даних і виконано прогнозування на основі регресійних моделей, методу групового урахування аргументів та авторегресійної нейронної мережі. Для прогнозування волатильності фінансового ряду застосовано гетероскедастичні моделі зі змінною волатильністю типу ARCH та GARCH. Застосовано попереднє оброблення даних з використанням методу Хольта–Вінтерса та фільтра Калмана, що дозволило істотно покращити якість моделей і точності прогнозування. Запропоновано і розроблено комбінацію моделей сезонної авторегресії з інтегрованим ковзним середнім та гетероскедастичної, що дало змогу врахувати наявні сезонні ефектів і тренди, притаманні фінансовим рядам, і отримати високі прогнозні оцінки для фінансових показників.

Keywords