Materials (Apr 2023)

Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites

  • Xiaoshuang Xiong,
  • Zisheng Wang,
  • Zihao Zhang,
  • Qiaomin Li,
  • Chen Shen,
  • Fei Fan,
  • Xiang Li,
  • Mingzhang Chen

DOI
https://doi.org/10.3390/ma16093489
Journal volume & issue
Vol. 16, no. 9
p. 3489

Abstract

Read online

Natural fiber reinforced composites are increasingly used to fabricate structural components prone to suffering low-velocity impacts. The low-velocity impact response of flax fabric reinforced composites under different impact energies is experimentally studied and numerically simulated. A multi-scale finite element analysis strategy for the progressive damage prediction of flax fabric reinforced composites is developed. Micro- and meso-scale analyses are conducted to predict the effective properties of the woven unit cell. Macro-scale analysis is carried out subsequently to predict the impact response of composite laminates using the results of micro- and meso-scale analyses as inputs. Simulation results and experimental results both show that most of the impact energy is absorbed by the specimens when the impact energy is lower than 4 J, and the absorption ratio of impact energy slightly increases with the increase in impact energy. On the contrary, a dramatic decrease occurs in the absorption ratio when the impact energy is 6 J, due to the severe damage to the specimen. In addition, simulation results indicate that matrix shear damage and interlaminar damage are the primary failure modes of composites under high impact energy. The numerical results of impact force, absorbed energy, and damage morphologies on both sides for all specimens show good agreement with the experimental results.

Keywords