mBio (Apr 2023)

Niche Modification by Sulfate-Reducing Bacteria Drives Microbial Community Assembly in Anoxic Marine Sediments

  • Qi-Yun Liang,
  • Jin-Yu Zhang,
  • Daliang Ning,
  • Wen-Xing Yu,
  • Guan-Jun Chen,
  • Xuanyu Tao,
  • Jizhong Zhou,
  • Zong-Jun Du,
  • Da-Shuai Mu

DOI
https://doi.org/10.1128/mbio.03535-22
Journal volume & issue
Vol. 14, no. 2

Abstract

Read online

ABSTRACT Sulfate-reducing bacteria (SRB) are essential functional microbial taxa for degrading organic matter (OM) in anoxic marine environments. However, there are little experimental data regarding how SRB regulates microbial communities. Here, we applied a top-down microbial community management approach by inhibiting SRB to elucidate their contributions to the microbial community during OM degradation. Based on the highly replicated microcosms (n = 20) of five different incubation stages, we found that many microbial community properties were influenced after inhibiting SRB, including the composition, structure, network, and community assembly processes. We also found a strong coexistence pattern between SRB and other abundant phylogenetic lineages via positive frequency-dependent selection. The relative abundances of the families Synergistaceae, Peptostreptococcaceae, Dethiosulfatibacteraceae, Prolixibacteraceae, Marinilabiliaceae, and Marinifilaceae were simultaneously suppressed after inhibiting SRB during OM degradation. A close association between SRB and the order Marinilabiliales among coexisting taxa was most prominent. They contributed to preserved modules during network successions, were keystone nodes mediating the networked community, and contributed to homogeneous ecological selection. The molybdate tolerance test of the isolated strains of Marinilabiliales showed that inhibited SRB (not the inhibitor of SRB itself) triggered a decrease in the relative abundance of Marinilabiliales. We also found that inhibiting SRB resulted in reduced pH, which is unsuitable for the growth of most Marinilabiliales strains, while the addition of pH buffer (HEPES) in SRB-inhibited treatment microcosms restored the pH and the relative abundances of these bacteria. These data supported that SRB could modify niches to affect species coexistence. IMPORTANCE Our model offers insight into the ecological properties of SRB and identifies a previously undocumented dimension of OM degradation. This targeted inhibition approach could provide a novel framework for illustrating how functional microbial taxa associate the composition and structure of the microbial community, molecular ecological network, and community assembly processes. These findings emphasize the importance of SRB during OM degradation. Our results proved the feasibility of the proposed study framework, inhibiting functional taxa at the community level, for illustrating when and to what extent functional taxa can contribute to ecosystem services.

Keywords