Frontiers in Neuroscience (Nov 2021)

Realizing the Application of EEG Modeling in BCI Classification: Based on a Conditional GAN Converter

  • Xiaodong Zhang,
  • Xiaodong Zhang,
  • Zhufeng Lu,
  • Zhufeng Lu,
  • Teng Zhang,
  • Teng Zhang,
  • Hanzhe Li,
  • Hanzhe Li,
  • Yachun Wang,
  • Yachun Wang,
  • Qing Tao

DOI
https://doi.org/10.3389/fnins.2021.727394
Journal volume & issue
Vol. 15

Abstract

Read online

Electroencephalogram (EEG) modeling in brain-computer interface (BCI) provides a theoretical foundation for its development. However, limited by the lack of guidelines in model parameter selection and the inability to obtain personal tissue information in practice, EEG modeling in BCI is mainly focused on the theoretical qualitative level which shows a gap between the theory and its application. Based on such problems, this work combined the surface EEG simulation with a converter based on the generative adversarial network (GAN), to establish the connection from simulated EEG to its application in BCI classification. For the scalp EEGs modeling, a mathematical model was built according to the physics of surface EEG, which consisted of the parallel 3-population neural mass model, the equivalent dipole, and the forward computation. For application, a converter based on the conditional GAN was designed, to transfer the simulated theoretical-only EEG to its practical version, in the lack of individual bio-information. To verify the feasibility, based on the latest microexpression-assisted BCI paradigm proposed by our group, the converted simulated EEGs were used in the training of BCI classifiers. The results indicated that, compared with training with insufficient real data, by adding the simulated EEGs, the overall performance showed a significant improvement (P = 0.04 < 0.05), and the test performance can be improved by 2.17% ± 4.23, in which the largest increase was up to 12.60% ± 1.81. Through this work, the link from theoretical EEG simulation to BCI classification has been initially established, providing an enhanced novel solution for the application of EEG modeling in BCI.

Keywords