Water (Dec 2020)

Hydrodynamic and Wave Responses During Storm Surges on the Southern Brazilian Coast: A Real-Time Forecast System

  • Arslaan Khalid,
  • Andre de Souza de Lima,
  • Felicio Cassalho,
  • Tyler Miesse,
  • Celso Ferreira

DOI
https://doi.org/10.3390/w12123397
Journal volume & issue
Vol. 12, no. 12
p. 3397

Abstract

Read online

Coastal flooding is a global phenomenon that results in severe economic losses, threatens lives, and impacts coastal communities worldwide. While recent developments in real-time flood forecasting systems provide crucial information to support coastal communities during coastal disasters, there remains a challenge to implement such systems in data-poor regions. This study demonstrates an operational real-time coupled surge wave guidance system for the coastal areas of Southern Brazil. This system is based on the recently developed integrated flood (iFLOOD) model, which utilizes the coupled hydrodynamic and phase-averaged ADCIRC–SWAN wave numerical model, driven by astronomical tides and atmospheric forcing from the Global Forecast System (GFS). This numerical modeling framework can simulate water levels and waves with a lead time of 84 h. A version of the coupled ADCIRC–SWAN model calibrated for Brazil, i.e., iFLOOD-Brazil, was operationally implemented (i.e., twice a day) over a period of 4 months (April to September 2020) for normal daily weather validation, as well as during a recent “bomb” cyclone that strongly impacted the southern coast of the country in June 2020. The real-time water levels and waves forecasted by iFLOOD-Brazil showed promising results against observations, with root mean square error (RMSE) values of 0.32 m and 0.68 m, respectively, for normal daily weather. Additionally, the RMSE values were 0.23 m for water levels and 1.55 m for waves during extreme weather, averaged over eight water level and two wave recording stations. In order to improve real-time predictions, a bias correction scheme was introduced and was shown to improve the water level and wave forecasts by removing the known systematic errors resulting from underestimation of astronomical tides and inadequate initial boundary conditions. The bias-corrected forecasts showed significant improvements in forecasted wave heights (0.47 m, 0.35 m) and water levels (0.17 m, 0.28 m) during daily and extreme weather conditions. The real-time iFLOOD-Brazil forecast system is the first step toward developing an accurate prediction model to support effective emergency management actions, storm mitigation, and planning in order to protect these economically valuable and socially vulnerable coastal areas.

Keywords