Revista Facultad de Ingeniería Universidad de Antioquia (Jan 2015)

Performance of a Genetic Algorithm applied to robust design in multiobjective systems under different levels of fractioning

  • Enrique Canessa-Terrazas,
  • Héctor Allende-Olivares

Journal volume & issue
no. 75
pp. 80 – 94

Abstract

Read online

Este trabajo estudia el rendimiento de un Algoritmo Genético (AG) para encontrar soluciones a problemas de diseño robusto en sistemas multiobjetivo, con muchos factores de control y ruido, representando el vector de salida en una sola función de agregación. Los resultados muestran que el AG es capaz de encontrar soluciones que entregan un buen ajuste de la media de las respuestas a sus respectivos valores objetivo y con baja variabilidad, incluso con diseños experimentales altamente fraccionados, los cuales proveen de un número limitado de datos que se ingresan al AG. Esta conclusión es importante para la aplicación práctica del AG a estudios de diseño robusto. Generalmente, dichos estudios son llevados a cabo usando recursos escasos y lidiando con otras limitaciones, lo que obliga al ingeniero a usar pocos tratamientos y recoger una cantidad limitada de datos. Por eso, saber que el AG se comporta bien bajo esas situaciones, expande su aplicabilidad.

Keywords