Journal of Manufacturing and Materials Processing (Jul 2021)
Evaluation of Hardness and Residual Stress Changes of AISI 4140 Steel Due to Thermal Load during Surface Grinding
Abstract
During surface grinding, internal material loads are generated, which take effect on the surface and subsurface zone of AISI 4140 steel. High thermal loads can result in specific material modifications, e.g., hardness reduction and tensile residual stresses, due to inappropriate combinations of system and process parameters which influence the functional performance of the ground component in a negative way. In order to avoid this damaging impact due to the thermal effect, an in-depth understanding of the thermal loads and the resulting modifications is required. This relationship is described in the concept of Process Signatures applied in this paper. Experimentally determined temperature-time histories at various depths below the surface were used to estimate the thermal loads at the surface and subsurface using a numerical approach based on the finite element method (FEM). The results show that the hardness change during surface grinding correlates with the maximum temperature rate at given maximum temperatures. In addition, correlations between the hardness change and the Hollomon–Jaffe parameter are identified, taking into account both the absolute temperature and its evolution over time. Furthermore, it was shown that the surface residual stresses correlate with the maximum local temperature gradients at the surface if no detectable tempering of the microstructure takes place.
Keywords