Polymers (Jun 2022)

Enhancing the UV-Light Barrier, Thermal Stability, Tensile Strength, and Antimicrobial Properties of Rice Starch–Gelatin Composite Films through the Incorporation of Zinc Oxide Nanoparticles

  • Wantida Homthawornchoo,
  • Pimonpan Kaewprachu,
  • Suttiporn Pinijsuwan,
  • Orapan Romruen,
  • Saroat Rawdkuen

DOI
https://doi.org/10.3390/polym14122505
Journal volume & issue
Vol. 14, no. 12
p. 2505

Abstract

Read online

The effects of zinc oxide nanoparticles (ZnONPs) on the properties of rice starch–gelatin (RS–G) films were investigated. ZnONPs were synthesized by a green method utilizing Asiatic pennywort (Centella asiatica L.) extract. The ZnONPs were rod-shaped, with sizes ranging from 100–300 nm. An increase in the concentration of ZnONPs significantly (p −11 g m/m2 s Pa), and thermal stability of the RS–G–ZnONPs nanocomposite films. On the other hand, elongation at break (92.20–37.68%) and film solubility (67.84–30.36%) were significantly lower (p Staphylococcus aureus TISTR 746, Bacillus cereus TISTR 687, Escherichia coli TISTR 527, Salmonella Typhimurium TISTR 1470) and antifungal activity toward Aspergillus niger. According to these findings, RS–G–ZnONPs nanocomposite film possesses a potential application as an active packaging: antimicrobial or UV protective.

Keywords