Particle and Fibre Toxicology (Jul 2018)

Phosphonate coating of SiO2 nanoparticles abrogates inflammatory effects and local changes of the lipid composition in the rat lung: a complementary bioimaging study

  • Mandy Großgarten,
  • Matthias Holzlechner,
  • Antje Vennemann,
  • Anna Balbekova,
  • Karin Wieland,
  • Michael Sperling,
  • Bernhard Lendl,
  • Martina Marchetti-Deschmann,
  • Uwe Karst,
  • Martin Wiemann

DOI
https://doi.org/10.1186/s12989-018-0267-z
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background The well-known inflammatory and fibrogenic changes of the lung upon crystalline silica are accompanied by early changes of the phospholipid composition (PLC) as detected in broncho-alveolar lavage fluid (BALF). Amorphous silica nanoparticles (NPs) evoke transient lung inflammation, but their effect on PLC is unknown. Here, we compared effects of unmodified and phosphonated amorphous silica NP and describe, for the first time, local changes of the PLC with innovative bioimaging tools. Methods Unmodified (SiO2-n), 3-(trihydroxysilyl) propyl methylphosphonate coated SiO2-n (SiO2-p) as well as a fluorescent surrogate of SiO2-n (SiO2-FITC) nanoparticles were used in this study. In vitro toxicity was tested with NR8383 alveolar macrophages. Rats were intratracheally instilled with SiO2-n, SiO2-p, or SiO2-FITC, and effects on lungs were analyzed after 3 days. BALF from the right lung was analyzed for inflammatory markers. Cryo-sections of the left lung were subjected to fluorescence microscopy and PLC analyses by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MS), Fourier transform infrared microspectroscopy (FT-IR), and tandem mass spectrometry (MS/MS) experiments. Results Compared to SiO2-p, SiO2-n NPs were more cytotoxic to macrophages in vitro and more inflammatory in the rat lung, as reflected by increased concentration of neutrophils and protein in BALF. Fluorescence microscopy revealed a typical patchy distribution of SiO2-FITC located within the lung parenchyma and alveolar macrophages. Superimposable to this particle distribution, SiO2-FITC elicited local increases of phosphatidylglycerol (PG) and phosphatidylinositol (PI), whereas phoshatidylserine (PS) and signals from triacylgyceride (TAG) were decreased in the same areas. No such changes were found in lungs treated with SiO2-p or particle-free instillation fluid. Conclusions Phosphonate coating mitigates effects of silica NP in the lung and abolishes their locally induced changes in PLC pattern. Bioimaging methods based on MALDI-MS may become a useful tool to investigate the mode of action of NPs in tissues.

Keywords