Geoderma (Feb 2025)

Freeze-thaw carry-over effect promotes decomposition of recalcitrant carbon in peatlands by nitrogen limitation

  • Jiawen Yan,
  • Lianxi Sheng,
  • Xiaofei Yu,
  • Shanshan Ding,
  • Yongen Min,
  • Hongyan Shen,
  • Yuanchun Zou

Journal volume & issue
Vol. 454
p. 117182

Abstract

Read online

Peatlands are pivotal in global carbon sequestration initiatives. However, studies of winter ecological factors and their subsequent effects on soil carbon–nitrogen (C-N) coupling processes remain limited, particularly amidst altering snowpack conditions due to climate change. Here, an in situ field experiment focusing on snowpack manipulation (presence and absence) was conducted within a northern peatland, China. The N functional groups and availability, bacterial community’s structure, succession and metabolic function, and carbohydrate-active enzymes (CAZymes) were determined at 0–30 cm (topsoil) and 30–60 cm (subsoil) employing synchrotron radiation X-ray absorption near-edge structure (XANES) and metagenomic sequencing technologies. The findings revealed that snowpack absence augmented the number of freeze–thaw cycles by 9 times, causing the subsoil that initially did not experience freeze–thaw cycles to undergo 17 cycles. This amplification of freeze–thaw cycles significantly influenced soil N processes during the freeze–thaw period and subsequent seasons. Specifically, it resulted in a 40.2 % and 1.8 % increase in the metabolic potential of denitrification in the topsoil and subsoil, respectively. Concurrently, there was a reduction in inorganic N content by 4.1 % and 4.4 % in the topsoil and subsoil, respectively. Furthermore, the diminished N availability (ammonium and inorganic N) intensifying soil N limitation subsequently altered microbial assembly processes. This shift led to a significant increase in the abundance of CAZymes encoding the decomposition of lignin (19.2 % and 4.8 %), chitin (4.8 % and 1.4 %), and murein (9.0 % and 0.8 %) in the topsoil and subsoil. Additionally, the content of pyridine, primarily derived from the decomposition of lignin and microbial cell walls, increased by 2.2 % and 1.9 % at two studied depths under snowpack absence conditions. These results uncover a cascading relationship between snowpack conditions, N availability, and the decomposition of recalcitrant carbon in peatland soils, highlighting the need for further comprehensive studies in this domain.

Keywords